

Developing a SAX Filtering Intermediary
Service for Protecting SVG Multimedia

Contents in a Ubiquitous Publish/Subscribe
Environment

Dr. Jinan Fiaidhi, Dr. Sabah Mohammed, Dr. Madan Garg and Ahmed Sabbir Arif

Abstract—It is important to enable peers to protect and update

their trust in multimedia documents that they are exchanging with
other peers in open network for sharing files, especially services. In
this paper, we propose a SAX filter intermediary service that can
protect SVG sharing on JXTA network.

Index Terms—SVG Filter, JXTA Services, Java Crypto APIs,
XML Encryption.

I. INTRODUCTION

WITH the increased use of multimedia in daily
communications, it is necessary to develop efficient and
secure transmission mechanisms that are specifically tailored
for multimedia. Ubiquitous computing characteristics and high
bandwidth requirements of multimedia data requires efficient
and scalable mechanisms. For success of commercial
multimedia distribution, security mechanisms will be a major
factor. Most of the researches on multimedia security have
focused on watermarking related issues [1]. Security issues
related to streaming is not researched in detail and requires
further progress [2]. Pervasive Internet services today promise
to provide users with a quick and convenient access to a
variety of commercial applications. Moreover, the multimedia
distribution based on the pervasive Internet services today
didn’t reach a satisfactory success level due to unsuitable

architectures and poor performance user acceptance. To be a
major success ubiquitous and mobile services have to provide
device-adapted multimedia content and advanced value-added
Web services. Innovative enabling technologies like XML and
peer-to-peer and wireless communication may for the first
time provide a facility to interact with online applications
anytime anywhere.

Accepted Article (Paper ID Number: ICC3800) for Presentation at the

International Conference on Internet Computing (ICOMP2005) at the 2005
International Multiconference in Computer Science and Computer
Engineering, June 27-30, 2005, Las Vegas, USA.

Dr. Jinan Fiaidhi is an Associate Professor with the Department of
Computer Science, Lakehead University, Ontario P7B 5E1 Canada (phone: 1-
807-343-8224; fax: 1-807-343-8023; e-mail: jfiaidhi@lakeheadu.ca).

Dr. Sabah Mohammed is an Associate Professor with the Department of
Computer Science, Lakehead University, Ontario P7B 5E1 Canada (e-mail:
mohammed@lakeheadu.ca).

Dr. Madan Garg is a Principle Lecturer with the College of Information
Technology, University Tenaga National, 43009 Kajang, Selangor, Malaysia
(e-mail: madan@uniten.edu.my).

Ahmed Sabbir Arif is a Graduate Student of the Department of Computer
Science, Lakehead University, Ontario P7B 5E1 Canada (e-mail:
asarif@lakeheadu.ca).

There are two major standards currently available for
representing multimedia in an XML form with the underlying
APIs for their transcoding on mobile and ubiquitous devices,
the ebXML standard (http://www.ebxml.org) and the World
Wide Web Consortium (W3C) standard
(http://www.w3c.org). The most common standard is the W3C
which is based on SVG (Scalable Vector Graphics) standard
for representing multimedia. There are three variants of SVG
(SVG 1.2, SVG Basic and SVG Tiny) which can be used with
resource-limited mobile devices. Unlike other multimedia
formats, SVG becomes a powerful tool for anybody managing
multimedia content for the Web or other environments [3]. By
leveraging the force of XML and the visual strengths of
dynamic and easily accessible vector graphics, the Apache
XML Project’s Batik team extends this power in building a
successful APIs that can be used for transcoding. With SVG
all the graphical information is stored in a sequence of
commands to draw lines, shapes, and other objects. This
information is eventually converted to application-specific
bitmaps, also called raster graphics. The task of converting an
SVG image to a raster image is accomplished either with a
browser (plug-in) or using rendering APIs within an
application. Note that this is different from bitmap-based
multimedia graphics like GIFs or JPEGs, which must be
generated on the server and delivered to the client as bitmap
images. An SVG file is in XML format. When it is delivered
to a browser/SVG renderer, all the contents are stored in the
Document Object Model (DOM) and the DOM tree can be
transcoded and optimized according to the capability of the
receiving device. However, the heterogeneous issue in terms
of device capabilities is a problem that have been highly
investigated and in order to cater to the needs of these devices
in many Web applications, smart intermediaries have been
developed to increase the user satisfaction by hiding the
inherent weakness of some of the small although handy
devices like the PDAs and Web-tops [4]. Such intermediaries

provide a framework for creating intermediary applications
which can monitor and modify the flow of Web data between
clients, servers and proxies. For example, they can produce
personalized content, connect local and remote information on
the Web, route Web traffic, translate protocols, translates
document formats or transcoding documents. All such
intermediary operations aim to produce a more powerful and
flexible web. Indeed, all such advantages are made possible
by only maintaining limited number of central servers. Such
intermediaries are only available for the Web client server
architecture and cannot be adopted for peer-to-peer ubiquitous
environment.

In this paper we are proposing a framework for developing
a smart intermediary for SVG protection that can be used for
ubiquitous publish/subscribe environment like JXTA.
Through such an intermediary architecture that serves a
heterogeneous client base we exploit the issue of protecting
SVG contents through the notions of SVG Filtering and SVG
Encryption.

II. THE PUBLISH SUBSCRIBE UBIQUITOUS ENVIRONMENT
Web Intermediaries (WBI, pronounced “webby”) was the

first architecture and framework for enabling ubiquitous
computing integrity by creating intermediary applications on
the web that can act as proxies between the varieties of
heterogeneous devices. Indeed WBI is a programmable web
proxy and web server. The work on Web intermediaries is
started by IBM in there WBI model [5]. However, some major
concerns have been raised about the WBI model, for example
overload and expensive operation cost of the central servers,
needs of mutual and direct communications between network
users. As a result, peer-to-peer technology has become
popular and has been used in networks that manage vast
amounts of data daily, and balance the load over a large
number of servers. Peer-to-peer (P2P) applications such as
distributed search applications, file sharing system,
collaborative multimedia, distributed storage system, and
distributed learning objects have been proposed and
developed. Such P2P applications do not use central servers
and are based on publish/subscribe model (PSM), which
gained much attention and popularity these days for
disseminating information in complex distributed applications.
Unlike the traditional WBI model, the publish/subscribe
middleware takes care of all the network programming and
message-passing chores, dramatically simplifying application
development for enterprise and Internet applications.
Publish/subscribe data distribution is gaining popularity in
many distributed applications, such as searching and
exchanging learning objects in a highly distributed
environment (e.g. Edutella [6]), financial communications [7],
web-based push technologies [8], and command and control
systems [9]. Its popularity is justified. Publish/subscribe
substantially reduces development, deployment, and
maintenance effort while delivering better performance for
applications with complex data flow. Several features
characterize the publish/subscribe architecture [10]:

1) Distinct Declaration and Delivery: Communications
occur in three steps:

1. Publishers declare intent to publish a publication.
2. Subscribers declare interest in a publication.
3. Publishers send a publication issue.
2) Named Publications: Publish/subscribe applications

distribute data using named publications. Each publication has
a topic and a type. The topic is a name used by publishers and
subscribers to create a logical data channel. The type describes
the data format. Each incremental value of a publication is an
issue. Most publish/subscribe architectures support arbitrary,
user-defined types with automatic type conversion among
computer architectures.

3) Many-to-many Communications Support:
Publish/subscribe distributes each issue simultaneously from
one publisher to many subscribers. The model’s flexibility
also helps developers implement complex, many-to-many
distribution schemes quite easily. For example, different
publishers can declare the same topic so those subscribers get
issues from multiple sources.

4) Event-driven Transfer: Publish/subscribe communication
is naturally event driven. Publishers send each issue when it is
ready. When the issue arrives, the subscribers receive
notification.

5) Middleware: Publish/subscribe services are typically
made available through middleware that sits on top of the
operating system’s network interface and presents an
application programming interface. The middleware handles
three basic programming chores:

- Maintains the database that maps publishers to
subscribers. The result is logical data channels for each
publication between publishers and subscribers.

- Serializes and deserializes the data on its way to and
from the network to reconcile publisher and subscriber
platform differences.

- Delivers the published data.

III. SERVICES IN JXTA PUBLISH/SUBSCRIBE NETWORK
Capturing the advantages of a PSM requires more than just

migrating to the use of XML Web Services for peer-to-peer
transactions. To enable web services over ubiquitous and P2P
environments it is necessary to establish open, asynchronous,
scalable data exchange network among multiple entities with
security and reliable delivery guarantees via XML routing. In
this direction there are only few infrastructures that can be
used for this purpose, like, Jabber [11], JXTA [12], and
NaradaBrokering [13]. On one hand, Jabber represents an
instant messaging service with file sharing. Jabber was
originally designed to provide interoperability among popular
Internet instant messaging systems (AOL, MSN, Yahoo!,
ICQ, and so on). It is a powerful and flexible yet simple
protocol that can wrap around all existing instant messaging
protocols. However, Jabber is not a sophisticated protocol that
is able to support smart middleware such security filters. On
the other hand, JXTA and NaradaBrokering are more
sophisticated infrastructures that can model security
middleware based on JXTA Super Peer Proxies and Narada

Brokers. Narada is a distributed event brokering system based
on the publish/subscribe paradigm and is designed to run on a
very large network of broker nodes. Actually, Narada is
designed to support for P2P interactions only through JXTA
via using a JMS compliant protocol [14]. This means that
JXTA remains the essential infrastructure for constructing
publish/subscribe networks with support of middleware
services. Peers cooperate and communicate to publish,
discover and invoke network services. With JXTA peers can
publish as many services that it can provide. Peers discover
network services via the Peer Discovery Protocol. JXTA
describe services via Modules or Module Advertisements.
JXTA modules are an abstraction used to represent any
functionality that has to be implemented in the network.
Modules are used to represent different implementations of a
network service on different platforms. The module
framework needs to distinguish there different module
implementations, possibly by some metadata representation,
such as an advertisement. The Module Class Advertisement is
primarily used to advertise the existence of a class (behavior)
of a module. The module class provides the information
shown below:
<?xml version="1.0"?>
<!DOCTYPE jxta:MCA>
<jxta:MCA xmlns:jxta="http://jxta.org">
<MCID>
 urn:jxta:uuid-00CFA9212D884C61B8189F9C70AA35E105
</MCID>
<Name>
 urn:module/hello-service
</Name>
<Desc>
 A service to allow us to say hello
</Desc>
</jxta:MCA>

Fig. 1. The JXTA Service Publish Subscribe Mechanism.

The advertisement can be used by the peer to search for a
module class based on its elements, Module Class ID
(MCID), its Name (Name) and the description (DESC) [15].
Each module has a unique Module Class Advertisement to
identify its Module Class (the service). In the above example,
the ‘Hello Service’ is associated with its own Module Class
Advertisement that defines a module class responsible for
saying “Hello World!” However, creating a service requires
also that these module advertisements which are published in
the JXTA network to be discovered by other peers. Actually
what JXTA provided for discovering services is an
asynchronous mechanism for searching for advertisements
(e.g. peers, peer groups, pipes, class advertisement module,
services) which can be retrieved in JXTA local cache. The
discovery mechanism can also sends Discovery Query
Message to a specific peer or to be propagated to the JXTA

network. Fig. 1 illustrates the JXTA service publish/subscribe
mechanism.

IV. JXTA SVG INTERMEDIARY SECURITY FILTER
SERVICE

Commonly the Secure Socket Layer (SSL) is the protocol
used for the Web application for achieving security, which is
typically used with HTTP. Despite its popularity, SSL has
some limitations when it comes to Intermediaries. SSL is
designed to provide point-to-point security, which fall short
for multiple intermediaries such as security and transcoding
intermediaries because of the many nodes that could exist
between the two endpoints [16]. Thus, various XML-based
security initiatives are in the works to address the security
problem of intermediaries. These schemes include:

- XML Encryption (W3C Standard),
- XML digital signature (W3C Standard),
- XKMS (XML Key Management Specification),
- XACML (Extensible Access Control Markup

Language),
- SAML (Secure Assertion Markup Language),
- WS-Security (Web Services Security),
- ebXML Message Service, and
- The Liberty Alliance Project.

Fig. 2.1. JXTA TLS Secure Transportation Protocol.

On the light of these initiatives JXTA team proposed three
choices for establishing various security levels [17]: the
adoption of TLS (http://www.rtfm.com/puretls), an emerging
industry protocol for the secure transport of information (Fig
2.1); Cryptix 3 (http://www.cryptix.org) is an implementation
of Sun’s JCE 1.1 Java Heavyweight Cryptographic Extensions
and provides standard interfaces for cryptographic algorithms
and services. It is used by the TLS for various algorithms, and
the Cryptix ASN.1 Kit (http://sourceforge.net/projects/cryptix-
asn1) which is a language that allows definitions of various
data types, such as integers, strings, sequences, and so on. The
ASN.1 kit can be used to use this notation in Java programs to
support X509V3 authentication certificates.

Although such security directions might be appealing, they
create several technical difficulties when implemented for
securing newly created services in ubiquitous environment
[18]. For the same reason the Bridge project [19] tries to use
the same Web Security techniques with JXTA by making the
JXTA messaging talk SOAP. The use of SOAP will enable
JXTA to:
1. Let JXTA peers discover services without having to

worry about building in protocol style interaction for each
service.

2. SOAP can be used for encodings, faults, etc. over the
JXTA network.

3. JXTA services from different parties can interact via
SOAP without having to worry about protocol level
details.

4. Services that are built for JXTA can also be deployed
over other networks. HTTP, SMTP, etc.

Fig. 2.2 illustrates the use of JXTA SOAP for JXTA
services publishing and discovery.

Fig. 2.2. XTA SOAP Service Publishing and Discovery Infrastructure.

The Axis represents the SOAP engine -- a framework for
constructing SOAP processors such as clients, servers, and
gateways. The Bridge project intention of adopting SOAP as
the encoding format for inter-peer communication for JXTA
and for publishing and subscribing services is to adopt or
extend the good WBI Web Services Standards into JXTA (e.g.
WS-Security, WS-Management). This type of integration
scheme is not fully developed as well as it clearly adds more
complexity on top of JXTA which need to avoid when dealing
with ubiquitous environments.

The method that we are proposing in this paper is to use
SAX as a steam processing API to perform security operations
such as SVG Signature and SVG Encryption. With this kind
of processing, the costs in time and space are reduced and
accordingly performance is improved. Actually, it is possible
to process data as a stream whatever the encryption algorithms
are involved (e.g. block encryption or stream encryption). The
SAX model is quite different from the DOM model. Rather
than building a complete representation of the document, the
SAX fires off a series of events as it reads the document from
beginning to end. Those events are passed to event handlers,
which provide access to the contents of the document. There
are three classes of event handlers: DTDHandlers, for accessing
the contents of SVG Metadata; ErrorHandlers, for low-level
access to parsing errors; and, by far the most often used,
DocumentHandlers, for accessing the contents of the
document. For clarity’s sake, we will only cover
DocumentHandler events. A SAX processor will pass the
following events to a DocumentHandler:

- The start of the document.
- A processing instruction element.
- A comment element.
- The beginning of an element, including that element’s

attributes.
- The text contained within an element.
- The end of an element.
- The end of the document.

The DocumentHandler transforms the various objects into
stream which is known as XML serialization. This process
transforms a Java object tree into a textual XML stream. Many
APIs helps in performing SAX processing (e.g. Xerces,
Castor) and sometimes be used for pre-processing the input to
an XSLT transformation, or for post-processing the output
(see Fig. 2.3).

Fig. 2.3. SAX Processor without or with XSLT engine.

A SAX filter is simply a class that is passed as the event
handler to another class that generates SAX events, then
forwards all or some of those events on the next handler (or
filter) in the processing chain [20]. The basic idea is that an
XMLReader, instead of receiving XML text directly from a file,
socket, or other source, receives already parsed events from
another XMLReader. It can change these events before passing
them along to the client application through the usual methods
of ContentHandler and the other callback interfaces [21]. For
example, it can add a unique ID attribute to every element or
delete all elements in the SVG namespace from the input
stream. Fig. 3.1 diagrams the normal course of XML
processing where Fig. 3.2 diagrams the course of XML
processing with a filter.

XML
document

ContentHandler

startDocument()
startElement()
characters()
endElement()
precessing
Instruction()
...
endDocument()

Client
Application

XMLReader

setContentHandler()
setErrorHandler()
setDDTHandler()
setFeature()
setProperty()
...
parse()

parses

Fig. 3.1. The normal course of XML processing. A client application instructs
a parser, represented in SAX by an XMLReader object, to read the text of an
XML document. As it reads, the parser calls back to the client application’s
ContentHandler.

Since the filter sits in the middle between the real parser
and the client application, it can change the stream of events
that gets passed back and forth between the two. For example,
it can add new shapes to SVG on the fly. It can add
namespaces to elements and attributes that don’t normally
have them. It can work with the stream without actually
changing the data itself. And as we will see in later sections, it
can call a cryptography library to encrypt elements, decrypt
encrypted elements, sign a document or verify the signature.

XML
document

reader ContentHandler

startDocument()
startElement()
characters()
endElement()
precessing
Instruction()
...
endDocument()

Client
Application

XMLReader

setContentHandler()
setErrorHandler()
setDDTHandler()
setFeature()
setProperty()
...
parse()

filter ContentHandler

startDocument()
startElement()
characters()
endElement()
precessing
Instruction()
...
endDocument()

XMLFilter

setParent()
getParent()
setContentHandler
()
setErrorHandler()
setDDTHandler()
setFeature()
setProperty()
...
parse()

parses

Fig. 3.2. The course of XML processing with a filter. A client application
instructs the filter, represented in SAX by an XMLFilter object, to read the
text of an XML document. The filter then instructs the parser to read the text
of an XML document. As it reads, the parser calls back to the filter’s
ContentHandler. The filter’s ContentHandler then calls back to the client
application’s ContentHandler.

V. USING THE SAX FILTER FOR CRYPTOGRAPHY TASKS
The proposed model for protecting SVG multimedia

contents is very simple. A client application will instructs the
SAX filter to read the text of an XML (which is an SVG
indeed) document. The filter then instructs the parser to read
the text of an XML document. As it reads, the parser calls
back to the filter’s ContentHandler. The filter’s
ContentHandler will contain the processingInstruction()
function, which could be an instruction to encrypt/decrypt
elements, or sign/verify the document. The filter’s
ContentHandler will do the cryptographic tasks (by calling
functions like encryptElement(), decryptElement(),
signDocument() or verifyDocument()) and will call back to
the client application’s ContentHandler (or may be another
filter’s ContentHandler, if necessary. In this paper we will
only look at single filters. This is because using more than one
filter makes the diagrams complex and hard to fit in the page.
But adopting the idea with multiple filters is possible by
following the same architecture). Fig. 4 illustrates the
architecture. Now the question arises, which cryptography
libraries to use with this model. We will focus on this topic in
the next section.

XML
document

reader ContentHandler

startDocument()
startElement()
characters()
endElement()
encryptElement()
decryptElement()
signDocument()
verifySign()
...
endDocument()

Client
Application

XMLReader

setContentHandler()
setErrorHandler()
setDDTHandler()
setFeature()
setProperty()
...
parse()

filter ContentHandler

startDocument()
startElement()
characters()
endElement()
encryptElement()
decryptElement()
signDocument()
verifySign()
...
endDocument()

EncryptionFilter

setParent()
getParent()
setContentHandler
()
setErrorHandler()
setDDTHandler()
setFeature()
setProperty()
...
parse()

parses

Fig. 4. The course of XML crypto processing with a filter.

VI. CHOOSING THE XML SECURITY API LIBRARY
XML Encryption and Signature is very new. IBM has

submitted a Java Specification Request (JSR 106) that will
define its standard API [22]. Currently, however, no standard
exists on how the API should look. Only a handful of libraries
provide XML Encryption and Signature, and most of them are
heavyweight. Among the claimed lightweight libraries (like
the Bouncy Castle lightweight cryptography API or IAIK JCE
Toolkit) which are not yet tested for ubiquitous environments.
However and in order to suite the constraints of ubiquitous
devices, we decided to use the libraries provided by the Java
Card Technology [23]. In this direction, our filter’s
ContentHandler will perform the cryptographic tasks by
calling functions like encryptElement(), decryptElement(),
signDocument() or verifyDocument(). Then it will call back
to the client application’s ContentHandler or to other filter’s
ContentHandler. These functions can call java card’s security
and cryptography classes to do its task (see Fig. 5).

filter ContentHandler

startDocument()
startElement()
characters()
endElement()
encryptElement()
decryptElement()
signDocument()
verifySign()
...
endDocument()

encryptElement()
decryptElement()
signDocument()
verifySign()

call javacard.security package
call javacardx.crypto Package
...
encrypt() return element
decrypt() return element
sign() return doc
verify() return doc

Fig. 5. The dependency between filter ContentHandler and the Java Card
Security and Crypto packages.

Java Card™ offers the following algorithms for
cryptography purposes [25]:

1) Secret-key Algorithms: The javacardx.crypto.Cipher
class is the abstract base class for Cipher algorithms. It
provides encryption/decryption using secret-key algorithms
(DES, Triple DES). The javacard.security.Signature
class, which is the base class for Signature algorithms,
provides signature/verification using secret-key algorithms
(DES, Triple DES).

2) Public-key Algorithms: The javacardx.crypto.Cipher
class provides encryption/decryption using public-key
algorithms (RSA) as well. javacard.security.Signature
class also provides signature/verification using public-key
algorithms (RSA, DSA).

3) One-way Hash Functions: The base class for hashing
algorithms is class javacard.security.MessageDigest. It
provides mess-age digests, using one-way hash functions
(MD5, SHA-1, RIPEMD160).

The latest Java Card Specification (Version 2.2.1) also
supports AES (Advanced Encryption Standard) and Elliptic
Curves [24].

VII. IMPLEMENTATION ISSUES

A. Canonicalization
The Canonicalization of XML (which is in form of SVG)

documents must be done before applying our proposed model.
The XML 1.0 Recommendation describes the syntax of a class
of data objects called XML documents [26]. It is possible,
however, for logically equivalent XML documents to differ in
their physical representation. In particular, two equivalent
XML documents may differ on such issues as physical (i.e.
entity) structure, attribute ordering, character encoding and
insignificant whitespace. This means, equivalence testing
cannot be done at the byte level for arbitrary XML/SVG
documents. Such equivalence testing is useful in a number of
domains including digital signatures and encryption. The
Canonical XML specification aims to introduce a notion of
equivalence between XML documents which can be tested at
the syntactic level and, in particular, by byte-for-byte
comparison. It describes the canonicalization of XML
documents such that logically equivalent documents will have
the same byte-for-byte representation. We will not discuss on
canonicalization and will proceed further assuming all the
XML/SVG documents we are working on are in Canonical
Standard.

B. Implementing the SAX Portion
At first we have to create a filter interface that will call

methods like getParent() and setParent(). It will inherit
from a superinterface. The parent of a filter is eventually the
XMLReader to which the filter delegates most of its work. In
the context of SAX filters, the parent is not normally
understood to be the superclass of the filter class.

In the superinterface we should call methods like
getParent(), setParent() and others (like, setFeature(),

getFeature(), setProperty(), getProperty() so forth) if
necessary.

In the superinterface we will call the cryptography methods
we mentioned before. But before doing that we have to collect
the element or attribute we are planning to encrypt or decrypt.
Let’s say we are interested to encrypt d which is an attribute
of SVG Path element.

Filtering an element is very straightforwardly. The
complete set of attributes for any element is completely
available a single method call as an Attributes object. Thus
it’s easy to read through the list and respond appropriately
without building complicated data structures to maintain state
between method invocations. But as Attributes interface is
read-only we also need to create our own object that
implements the Attributes interface and is mutable. Doing so
would be a simple matter of programming, most of the time
it’s easier to use the class SAX provides for this purpose,
org.xml.sax.helpers.AttributesImpl. This implements the
Attributes interface and adds methods for copying existing
Attributes objects and adding attributes to and deleting
attributes from the list -- which is quite capable to satisfy our
purpose.

Which means we can get the value of d from the Path
element by calling a method like getD(type c) in the
AttributesImpl helper class. After getting the value we are
going to pass it to another class called encrypt. This is
because as we are using a different API (Java Card) to do the
encryption task. Doing the cryptography tasks in different
classes will not only avoid same reserved word conflict but
will also increase robustness and reusability.

C. Implementing the Java Card Portion
Let’s assume we already have generated the Public and

Private Key Pair and stored them to separate files and
concentrate on Sealing the Symmetric Key.

The pseudo code below shows an encrypt method to
encrypt d, seal the symmetric key, and send the encrypted
value and sealed key to the server:
private void encrypt(d)
{
 Create cipher for symmetric key encryption (DES)
 Create a key generator
 Create a secret (session) key with key generator
 Initialize cipher for encryption with session key
 Encrypt d with cipher
 Get public key from server
 Create cipher for asymmetric encryption
 (do not use RSA)
 Initialize cipher for encryption with public key
 Seal session key using asymmetric Cipher
 Send encrypted d and sealed session key to server
}

The pseudocode above says “do not use RSA” because it
has the size restrictions, and the sealing process makes the
session key too large to use with the RSA algorithm.
 We can also encrypting the symmetric key with the RSA
algorithm. The RSA algorithm imposes size restrictions on the
object being encrypted. RSA encryption uses the PKCS#1
standard with PKCS#1 block type 2 padding [27]. The PKCS
RSA encryption padding scheme needs 11 spare bytes to
work. So, if we generate an RSA key pair with a key size of
512 bits, we cannot use the keys to encrypt more than 53 bytes
(53 = 64 - 11) [27].

So, if we have a session key that is only 8 bytes long,
sealing expands it to 3644 bytes, which is way over the size
restriction imposed by the RSA algorithm. In the process of
sealing, the object to be sealed (the session key, in this case) is
first serialized, and then the serialized contents are encrypted.
Serialization adds more information to the session key such as
the class of the session key, the class signature, and any
objects referenced by the session key. The additional
information makes the session key too large to be encrypted
with an RSA key, and the result is a
javax.crypto.IllegalBlockSizeException run time error.

The pseudo code below shows how to encrypt d, seal
(encrypt) the session key, and send the encrypted d and sealed
session key to the server:
private void encrypt(d)
{
 Create cipher for symmetric key encryption (DES)
 Create a key generator
 Create a secret (session) key with key generator
 Initialize cipher for encryption with session key
 Encrypt d with cipher
 Get public key from server
 Create cipher for asymmetric encryption (RSA)
 Initialize cipher for encryption with public key
 Encrypt session key
 Send encrypted d and session key to server
}

VIII. CONCLUSION
SVG is spreading to back multimedia office systems,

business exchanges and wireless applications. Recently, SVG
is used by almost 50% of Websites, according to some
researchers. SVG has many advantages over other multimedia
formats, and particularly over JPEG and GIF, the most
common multimedia graphic formats used on the Web today.
Specifically because of are open-standard, XML syntax, and
scalability -- although the security awareness today is higher
than it’s ever been. We have industrial-strength encryption
that’s almost certainly unbreakable for at least the next
decade. But the very strength of our encryption capabilities is
only governed by those centralized servers which support
such powerful security algorithms. This paper presents a
framework for securing SVG contents on ubiquitous peer-to-
peer environments that is fully decentralized. The paper
investigates the available peer-to-peer infrastructures and
identifies JXTA as an effective one. Also it introduces a SAX
filter for protecting SVG contents using lightweight
cryptographic API such as Java Card. There are many
implementation issues remains to be addressed at our next
research work.

REFERENCES
[1] A. M. Eskicioglu and E. J. Delp, “An Overview of Multimedia Content

Protection in Consumer Electronics Devices,” Signal Processing: Image
Communication, Vol. 16, 2000, pp. 681-699.

[2] J. Roberto Bayardo, “An Evaluation of Binary XML Encoding
Optimizations for Fast Stream Based XML Processing”, ACM
WWW2004 Conference, May 17–22, 2004, New York, New York, USA.

[3] Tien Tran Thuong and Cecile Roisin, “Structured Media for Authoring
Multimedia Documents”, First International Workshop on Web

Document Analysis (WDA2001) Seattle, Washington, USA September
8, 2001.

[4] Mingchao Ma and Christoph Meinel “Independent Trust Intermediary
Service (ITIS)”, In Proceedings of IADIS International Conference
WWW/Internet 2002, Nov.2002, Lisbon, Portugal, pp.785-790.

[5] IBM Research. Web Intermediaries (WBI) Development Kit [Online].
Available: http://www.almaden.ibm.com/cs/wbi/doc

[6] Wolfgang Nejdl et al, Edutella: “A P2P Networking Infrastructure Based
on RDF”, ACM WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.

[7] Ju Long et al, “Securing newEra of Financial services”, IEEE IT Pro
Journal, July/August Issue, 2003.

[8] Brena Pinero, Ramón Felipe; Aguirre Cervantes, José Luis. “Push
Technologies leveraged by Intelligent Agents”, the 8th World Multi-
Conference on Systemics, Cybernetics and Informatics. Orlando,
Florida, July 2004.

[9] Graeme Burnett, “From CORBA to Command and Control Web
Services: - Web Services in Evolution”, Enhyper, May 2003.

[10] Ramnivas Laddad, Gerardo Pardo-Castellote, Stan Schneider, “Publish-
Subscribe Model: A question of architectural advantages and
limitations”, ISA InTech Journal, Issue of 31 May 2001.

[11] Peter Saint-André, “XML Messaging With Jabber”, O’Reilly XML
Journal, October 30, 2000 [Online]. Available:
http://www.oreillynet.com/pub/a/p2p/2000/10/06/jabber_xml.html

[12] Bilal Siddiqui, “JXTA for Wireless Java Programmers”, Java Developer
Journal, September 16, 2002.

[13] Shrideep Pallickara and Geoffrey Fox, “NaradaBrokering: A Distributed
Middleware Framework and Architecture for Enabling Durable Peer-to-
Peer Grids”, in Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003, Rio Janeiro, Brazil June
2003.

[14] Faheem Khan, “Implement JXTA-for-JMS”, IBM Resarch Journal, 22
Feb 2005.

[15] Sing Lee, “Making P2P interoperable: The JXTA command shell”, IBM
Resarch Journal, 01 Sep 2001.

[16] Zhenhai Duan et al., “Push vs. Pull: Implications of Protocol Design on
Controlling Unwanted Traffic”, Technical Report, University of
Minnesota in June 2003 [Online]. Available:
http://www.cs.fsu.edu/~duan/publications/pushpull.pdf

[17] Daniel Brookshier, Navaneeth Krishnan and Darren Govoni,” JXTA:
Java P2P Programming”, Sun Micro Systems, (June 2002).

[18] S. Mohammed, J. Fiaidhi, and L. Yang, “Developing Multitier
Lightweight Techniques for Protecting Medical Images within
Ubiquitous Environments”, IEEE 2nd Communications, Networks and
Service Research Conference (CNSR04), Fredericton, N.B., Canada,
May 19-21, 2004.

[19] Kevin A. Burton, “The JXTA SOAP Bridge”,
http://soap.jxta.org/servlets/ProjectHome

[20] Kip Hampton, “Transforming XML With SAX Filters,” O’Reilly XML
Online Articles, Oct. 2001 [Online]. Available:
http://www.xml.com/pub/a/2001/10/10/sax-filters.html

[21] Elliotte Rusty Harold, Processing XML with Java: A Guide to SAX,
DOM, JDOM, JAXP, and TrAX, 1st ed. Boston: Addison-Wesley
Professional, 2002, ch. 8.

[22] Ray Djajadinata, “Yes, you can secure your Web services documents”,
Java World Online Articles, Aug. 2002 [Online]. Available:
http://www.javaworld.com/javaworld/jw-08-2002/jw-0823-
securexml.html

[23] Sun Microsystems, Inc.. Java Card™ Technology Overview [Online].
Available: http://java.sun.com/products/javacard/overview.html

[24] Sun Microsystems, Inc. Release Notes (October 2003). Java Card™
Specification (V2.2.1) [Online]. Available:
http://java.sun.com/products/javacard/RELEASENOTES_jcspecs.html

[25] Java Card™ 2.1 Platform API Specification (V2.1) [Online]. Available:
http://java.sun.com/products/javacard/htmldoc

[26] World Wide Web Consortium (March 2001). Canonical XML (V1.0)
[Online]. Available: http://www.w3.org/TR/xml-c14n

[27] Monica Pawlan, “Essentials of the Java Programming Language”, Sun
Developers Network Tutorials & Code Camps, July 1999. Available:
http://java.sun.com/developer/onlineTraining/Programming/BasicJava2

	INTRODUCTION
	The Publish Subscribe Ubiquitous Environment
	Services in JXTA Publish/Subscribe Network
	JXTA SVG Intermediary Security Filter Service
	Using the SAX Filter for Cryptography Tasks
	Choosing the XML Security API Library
	Implementation Issues
	Canonicalization
	Implementing the SAX Portion
	Implementing the Java Card Portion

	Conclusion

