
Developing Filtering Techniques for Securing Vector Graphics
Images Applied to Ubiquitous Patient Records

Dr. Sabah MOHAMMED, Dr. Jinan FIAIDHI and Ahmed Sabbir ARIF

Department of Computer Science, Lakehead University,
955 Oliver Road, Thunder Bay, Ontario P7B 5E1,

Canada
http://flash.lakeheadu.ca/~mohammed

 http://flash.lakeheadu.ca/~jfiaidhi

Abstract- In this article we are describing the security challenges with the use of SVG Vector Graphics for
ubiquitous patient records. Moreover, we are presenting an architecture that incorporates security mediators in the
form of SVG filers to provide a highly flexible approach for accessing Electronic Patient Records. The SVG filters
are based on the SAX primitives to pushes pieces of the SVG to the encryption/decryption handlers. The SAX
handlers can filter, skip tags, or encrypt tags partially or universally at any time from the stream of the SVG. The
SVG encryption/decryption techniques used by the SAX filters implements the standard specification of the W3C
XML Encryption.

Key-Words- Vector Graphics Images, SVG, Ubiquitous Patient Records, SAX Filters, XML Encryption.

1. INTRODUCTION
Healthcare today is moving away from the tethered
domain and becoming diffused into an environment
rich with ubiquitous and portable digital devices. In this
evolving environment, the need to deliver information
such as Electronic Patient Records (EPR) at the point –
of – care is a prime factor in managing the healthcare
system efficiently. This however presents serious
security challenges in ubiquitous environments where
protecting the confidentiality of the information, while
at the same time allowing authorized user to access it
conveniently is the core issue in the paradigm.
However, ubiquitous computing based on XML has the
potential to improve many workflows in Health Care.
In particular, XML promises a means of providing
flexible, incremental employment of electronic systems,
and also provides a means for easy communication
between disparate binary electronic systems. Ultimately
and ideally the whole healthcare record system will be
based on a non-proprietary mark-up language (XML),
but till that day comes we need to develop effective
XML security that can work within variety of
environments. In this direction, several organizations
have produced standards for XML security and XML
patient records. The most visible of these are the Health
Level 7 (http://www.hl7.org/), the W3C XML
Encryption and Signature (www.w3c.org), EHRcom
(http://www.centc251.org/), OpenEHR
(http://www.openehr.org/), MedBiquitous
(http://www.medbiq.org/), HandHeldMed

(http://www.patienttracker.com/products.htm),
DICOMX (http://142.104.48.20/Benjamin.Jung/),
Wireless MediCenter
(http://www.wirelessmedicenter.com/mc/glance.cfm)
the m-care (http://www.m-care.co.uk/tech.html)
PatientKeeper
(http://www.patientkeeper.com/products.html) and
PocketMD (http://www.pocketmd.com). Furthermore,
motivations such as patient privacy protection and
recent laws like the US Health Insurance Portability and
Accountability Act (HIPAA), the US President
Executive Order (13335 of April 2004) on the
migration to EPR, and the Canada Health Act make
security a fundamental concern within the healthcare
industry.

Indeed, the use of XML is not limited for the
representation of textual documents, but it can also be
used to represent each document in the processing of
medical tests and imaging. Once an application is built
on XML such as a patient record standard, then a wide
range of other XML standards can be brought to bear
such as using XML parsing based on DOM or SAX
models, or even as to represent and process graphical
images/multimedia using the W3C SVG vector
graphics standard. Our objective in this article is to
achieve secure sharing and accessing of
image/multimedia medical information on the Internet
or on ubiquitous devices while avoiding violations of
security or privacy. In this direction we are

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

 2

investigating, developing, and testing filtering
capabilities to complement other means of controlling
release of SVG medical documents to individuals and
organizations outside of the direct health-care delivery
setting. Our specific focus is on the use of effective
SVG filtering of the information contained in images
that are part of an electronic medical record.

However, since SVG graphics is in the end
just text (excluding the cases of embedded raster
graphics), the source is "open." This raises potential
security-related concerns in form of copyright
infringement and misuse. Although these issues already
exist with other text-based formats on the Web (e.g.
HTML, CSS, XML and JavaScript), there is a dire need
for a different solution; that take into account the nature
of the vector graphics. A possible direct solution can be
based on the use a compression mechanism that
converts vector graphics into binary with an
"encryption" to increase its security. The problem with
this approach is that it is contrary to the advantage of
including metadata information in SVG, if the markup
is "scrambled" in any way. Even if the metadata
information can be extracted, the authoring and
rendering (not to mention searching) software are
imposed with the additional burden of supporting that
compression mechanism. Even the use of a
compression scheme like XMLZip or XMill which
leaves the metadata information intact has very little
success [1]. The other fine solution is to keep the SVG
structure intact and try to filter in and out information
that need to be secured only. In this direction there are
two main approaches. One approach which uses an
access control map to allow only authorized accesses to
particular parts of the vector graphics [2].
Unfortunately, controlling access requires a perfect
organization of the internal data in an enterprise. In
many practical cases this requirement cannot be
fulfilled, since it implies a radical restructuring of all
internal information services. The cost of aligning all
internal data to deal with external access privileges is
not only costly from the systems point-of-view, but also
for all internal users of information systems, who now
must file all data according to external requirements
that are normally none of their concern. The second
approach is more comprehensive and relies on filtering
the graphical features of the vector graphic which are in
the form of contours (i.e. SVG paths) and try to
approximate it for compression and security purposes.
In this direction, researchers either use direct
approximations based on and cubic bezier, and elliptical
curves [3] for compression purposes only or use
triangulation techniques based on filtering in the
frequency domain using DDT (Data Dependent
Triangulation) or WBT (Wavelet Based Triangulation)
for compression and security purposes [4]. . Results
based on the direct approximation are not very good:
files size are too high, images are blurred, with a bad

“blocked” effect and colors are too much different from
the original image [5]. Triangulation on the other hand
requires a highly expensive iterative algorithm that
segments the vector image according to complicated
wavelet transformation which is applied to a Fourier-
transformed representation of the image [6].

In this article we are concerned with SVG
image filters which transform securely an SVG image
in a predictable fashion by recognizing the SVG
structure. For this purpose, our image filters replies on
utilizing a SAX parsing algorithm along with an
implementation to the W3C XML Encryption policy.

2. The W3C SVG Visual Filters:
Visual filters are a familiar concept if you've ever used
graphics programs: You take a raw image and tell your
program to put a little blur on it, or you might reverse
some of the image itself. In this direction W3C [7]
recommended certain SVG filters which consist of a
series of graphics operations that are applied to a given
source graphic to produce a modified graphical result.
The result of the filter effect is rendered to the target
device instead of the original source graphic. Filter
effects are defined by 'filter' elements. To apply a filter
effect to a graphics element or a container element, you
set the value of the 'filter' property on the given element
such that it references the filter effect. Each 'filter'
element contains a set of filter primitives as its children.
Each filter primitive performs a single fundamental
graphical operation (e.g. blur) on one or more inputs,
producing a graphical result. Because most of the filter
primitives represent some form of image processing, in
most cases the output from a filter primitive is a single
RGBA image. When applied to container elements such
as 'g', the 'filter' property applies to the contents of the
group as a whole. Typically, the graphics commands
are executed as part of the processing of the referenced
'filter' element via use of the keywords SourceGraphic
or SourceAlpha. Filter effects can be applied to
container elements with no content (e.g., an empty 'g'
element), in which case the SourceGraphic or
SourceAlpha consist of a transparent black rectangle
that is the size of the filter effects region.SVG Filter
primitives such as 'feGaussianBlur', 'feOffset',
'feSpecularLighting', 'feComposite', 'feMerge', '
feTurbulence ', 'feConvolveMatrix', 'feDiffuseLighting',
'feDisplacementMap', 'feFlood', 'feImage',
'feMorphology', and 'feTile' takes input SourceAlpha,
which is the alpha channel of the source graphic. The
result is stored in a temporary buffer which then can be
used by another SVG filter primitive to add more
graphical effects. Figure 1 illustrates the use of an SVG
filter (feTurbulence) to filter out part of the original
image as described by the rectangular SVG tag.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

 3

<svg width="450" height="325" viewBox="0 0 450 325">
 <title>Example feTurbulence </title>
 <g style="font-family:Verdana; text-anchor:middle">
 <defs>
<filter id="Del" filterUnits="objectBoundingBox" x="0%"
y="0%" width="100%" height="100%">
<feTurbulence type="turbulence" baseFrequency="0.05"
numOctaves="2"/>
</filter>
 </defs>
……
 </g>
</svg>
(c)
Figure 1: (a) Original SVG Image, (b) SVG image
after applying feTurbulence filter, (c) SVG code.

Although, the W3C SVG filters can be used to
hide or change some of the SVG document contents
using a wide variety of server side SVG generators that
can add SVG filters on the fly (e.g. AgileBox,
DataSlinger, CGI Perl Scripts), the usage of W3C SVG
filters can not secure SVG images as the receiver can
delete these filters from the SVG source and view the
original images.

3. XML Encryption Standard for SVG
Security:
With the increasing importance and widespread
distribution of SVGs the protection of the intellectual
property rights of the owner for their media has become
increasingly significant. SVG can be copied and widely
distributed without any significant loss of quality.
Protecting the property rights of the owners’ data is
therefore an increasingly important capability. In this
direction, the W3C has provided the specifications for
the security of any XML compliant data (e.g. SVG)
based on what is called “XML
Encryption”(http://www.w3.org/Encryption/2001/).
Although, there are many applications for such
specifications given the increasing importance of XML
on the Internet and Web, these implementations are
based on heavyweight DOM APIs (e.g. XSS4J, Apache
XML Security API, XMLSec, XMLDSig), which can
not yield acceptable performance for ubiquitous
applications (e.g. mobile, SmartCard)[8].

Generally speaking, there are two programming
models for working with XML infosets: document

streaming (SAX) and the document object model
(DOM). The DOM model involves creating in-memory
objects representing an entire document tree and the
complete infoset state for an XML document. Once in
memory, DOM trees can be navigated freely and parsed
arbitrarily, and as such provide maximum flexibility for
developers. However the cost of this flexibility is a
potentially large memory footprint and significant
processor requirements, as the entire representation of
the document must be held in memory as objects for the
duration of the document processing. This can cause
major performance degradation when used for
ubiquitous devices. However, SAX streaming refers to
a programming model in which XML infosets are
transmitted and parsed serially at application runtime,
often in real time, and often from dynamic sources
whose contents are not precisely known beforehand.
Moreover, stream-based parsers can start generating
output immediately, and infoset elements can be
discarded and garbage collected immediately after they
are used. Thus, streaming provides a smaller memory
footprint, reduced processor requirements, and higher
performance in processing multimedia. With SAX
streaming we choose to access the XML multimedia,
not as a tree of nodes, but as a sequence of events! This
makes SAX faster for highly constrained and
ubiquitous devices [9] but it necessitates the following
things:

• creation of your own custom object model
• creation of a class that listens to SAX events

and properly creates your object model.
At its core, SAX is based on just two interfaces, the
XMLReader interface that represents the parser and
the ContentHandler interface that receives data
from the parser. As SAX is the most reliable streaming
API for parsing XML, it becomes the most visible
alternative for implementing SVG security within
mobile/ubiquitous environments.

4. The Proposed SVG Security
Architecture:
Our architectural model is based on the concept of a
security mediator, called SAX Filters, that enables
legitimate external customers to gain remote electronic
access to medical information residing in a medical
institution, while inhibiting the release of content that
cannot be released, even when the accessors appear to
be authorized. Such a security mediator is typically
placed into the firewall surrounding the institution’s
internal database activities. A SAX filter is simply a
class that is passed as the event handler to another class
that generates SAX events, then forwards all or some of
those events on the next handler (or filter) in the
processing chain. A filter may prune the document tree
by not forwarding events for elements with a given
name (or that meet some other condition), while in
other cases, a filter might generate its own new events

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

 4

to add parent or child elements to certain elements the
existing document stream. Also, element attributes can
be added or removed or the character data altered in
some way. SAX filters often perform only a single,
simple task, but when piped together they are capable
of complex tasks. The basic structure of a SAX filter is
based on an XMLReader that receives already parsed
events from another XMLReader. Figure 2 diagrams
the course of SVG processing with a SAX filter. A
client application instructs the filter, represented in
SAX by an XMLFilter object, to read the text of an
XML document. The filter then instructs the parser to
read the text of an XML document. As it reads, the
parser calls back to the filter’s ContentHandler.
The filter’s ContentHandler then calls back to the
client application’s ContentHandler.

SVG

XMLReader XMLFilter

Client

filter ContentHandler

reader ContentHandler

Figure 2: The course of SVG processing with a SAX
filter.

Since the filter sits in the middle between the
real parser and the client application, it can change the
stream of events that gets passed back and forth
between the two. For example, it can add new shapes to
SVG on the fly. It can add namespaces to elements and
attributes that don’t normally have them. It can work
with the stream without actually changing the data
itself. And as we will see in later sections, it can call a
cryptography library to encrypt elements, decrypt
encrypted elements, sign a document or verify the
signature.

Using this idea of a SAX filter, we developed
a model for protecting SVG multimedia contents. A
client application will instructs the SAX Filter to read
the text of an SVG multimedia. The filter then instructs
the parser to read the text of an SVG document. As it
reads, the parser calls back to the filter’s
ContentHandler. The filter’s ContentHandler will
contain the processing instructions, which could be an
instruction to encrypt/decrypt elements of the SVG the
document. The filter’s ContentHandler will do the
cryptographic tasks and will call back to the client
application’s ContentHandler.

4.1. Developing the SVG SAX Filter
Our developed SAX filter is called XMLFilter which its
interface inherits methods from the XMLReader

superinterface. XMLFilter has just two methods,
getParent() and setParent(). The parent of a filter is the
XMLReader to which the filter delegates most of its
work. XMLReader provides fourteen other methods
such as getFeature(), setFeature(), getProperty(),
setProperty(), setEntityResolver(), getEntityResolver(),
setDTDHandler(), getDTDHandler(),
setContentHandler(), getContentHandler(),
setErrorHandler(), getErrorHandler() and parse().

The developed SVG Security prototype
involves two SAX filters, for encrypting and decrypting
(FilterEncryption and FilterDecryption). The main class
of the SVG security prototype is called SVGEncryption
which calls instances of these SVG filters and an
instance of a real parser, then passed the real parser to
the filter’s setParent() method:
String encryptFilter = "FilterEncryption";
String decryptFilter = "FilterDecryption";
// Encryption filter
XMLFilter filter =
(XMLFilter)Class.forName(encryptFilter).newInstance(
);
filter.setParent(XMLReaderFactory.createXMLReader(
));
// Decryption Filter
XMLFilter filter = (XMLFilter)
Class.forName(decryptFilter).newInstance();
filter.setParent(XMLReaderFactory.createXMLReader(
));
...

By doing this it is confirmed that the client
application only interacts with these filters. It forgets
that the original parser exists. Going behind the back of
the filter, for instance, by calling
setContentHandler() on parser instead of on
filter, runs the risk of confusing the filter by
violating constraints it expects to be true. All such
occasions was carefully avoided. Actually, the
XMLFilter interface filters are called from the client
application to the parser. Most events are passed in the
other direction from the parser to the client application
through the various callback interfaces, especially
ContentHandler. Hence, the XMLFilter is set up to
filter calls from the client application to the parser, but
not calls from the parser to the client application. To
achieve this type of communication, the
setContentHandler() method is replaced with two
method calls (HandlerDecryption, HandlerEncryption)
so that the handlers receive the callback events from the
parent parser. These methods either passes them along
or passes something different as instructed to the client
application’s handler methods. The following illustrates
how these two methods are called via the
setContentHandler() method:
...
public void setContentHandler(ContentHandler
handler)

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

 5

{ parent.setContentHandler(new
HandlerEncryption(handler));}
...
public void setContentHandler(ContentHandler
handler)
{ parent.setContentHandler(new
HandlerDecryption(handler));}
...

4.1.1 Handler for FilterEncryption: An
Example of one of the SAX Filters
The first thing the HandlerEncryption does, it asks the
users to provide with some information (e.g Encrption
Key). When the information collection is done, it goes
straight to the business. To do the encryption the filter
content handler does the followings:
1. When the parser encounters the start-tag and end-

tag that needs to be encrypted it changes the tag
name to <EncryptedData> and </EncryptedData>

2. When the parser encounters the element that needs
to be encrypted it sends the element content to
Encrypter class to do the encryption and receives
the cipher text.

3. Creates new attributes of EncryptedData (to save
the cipher and other encryption information).

The handler makes sure that the other attribute

doesn’t get lost or corrupted. This handler can encrypt
all the SVG tags (e.g. all path tags), any particular SVG
tag (e.g. only a particular path tag), or even a portion of
a particular path (e.g. “horizontal lineto”, “smooth
curveto”, etc).

5. EXPERMENTATIONS
Figure 3 shows an SVG mammogram image (part a)
with a white spot indicating an abnormality, where (part
b) of the image shows how our SAX encryption worked
on the path surrounding that spot and encrypt it to the
dark grey area. The partial area that needs to be
encrypted can be identified by using an identifier like
id=”spot” and the SAX encryptor will replace it with an
encrypted text identified by EncryptedData.

Moreover, the SAX filter has been used

effectively to encrypt and decrypt SVG patient records
using a Web based applet (Figure 4). However, there
are many implementation issues remain to be addressed
at our next research especially when SVG patient
record is processed under P2P (e.g. JXTA), J2ME or
JavaCard environments [10]. The authors are also
conducting additional experimentations to use the new
javacard.security [11] API instead the current
java.security API [12] as well as the StAX [13]
primitives instead of the SAX.

Figure 3: Encrypting a Partial SVG Image.

 (Before Encryption)

 (After Encryption)
Figure 4: A Screen Shot of the Web Based Prototype
for Encrypting/Decrypting SVG Patient Medical
Records.

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

 6

6. CONCLUSIONS
Current XML security implementations are based on
the DOM model. With ubiquitous devices we need
more effective model especially for XML multimedia
security. SAX represents a solution along with the new
SVG multimedia format. This article introduced the
steps for developing SAX filters for implementing the
XML Encryption on SVG. The SAX
Encryption/Decryption enables us to encipher any SVG
tag (s) or even to encipher an attribute within a specific
tag (e.g. to encipher line (L) within the path tag).

REFERENCES
[1] M. Cokus and D. Winkowski, “XML Sizing and
Compression Study for Military Wireless Data”, XML
Conference 2002, Dec. 8-13, 2002, Batimore, MD,
USA.
[2] E. Damiani, S. De Capitani di Vimercati, E.
Fernández-Medina, P. Samarati, "An Access Control
System for SVG Documents," in Proc. of the Sixteenth
Annual IFIP WG 11.3 Working Conference on Data
and Application Security, King's College, University of
Cambridge, UK, July 29-31, 2002.
[3] P. Kamthan, “XMLization of Graphics”, Internet
Related Technology OnLine Journal, Monday 27th
March 2000, http://www.irt.org/articles/js209/.
[4] S. Battiato, G. Barbera, G. Di Blasi, G. Gallo, G.
Messina, “Advanced SVG
Triangulation/Polygonalization of Digital Images”, In
proceedings of IS&T/SPIE Electronic Imaging 2005.
[5] J. Feng, T, Nishita, X. Jin, Q. Peng, "B-Spline Free-
Form Deformation of Polygonal Object as Trimmed
Bezier Surfaces", The Visual Computer, Vol.18, No.8,
pp.493-510, 2002-12
[6] S. Lee, “Wavelet-Based Multiresolution Surface
Approximation from Height Fields”, Ph.D. Thesis,
Virginia Polytechnic Insitute and State University,
Blacksburg, February 2002
[7] Matthew Duignan, Robert Biddle, Ewan Tempero,
“Evaluating scalable vector graphics for use in software
visualisation”, Proceedings of the Australian
symposium on Information visualisation, Adelaide,
Australia, Volume 24, pp. 127 – 136, 2003
[8] Dmitry Pavlov, Jianchang Mao, Byron Dom.
"Scaling-Up Support Vector Machines Using Boosting
Algorithm," icpr, p. 2219, 15th International
Conference on Pattern Recognition (ICPR'00) - Volume
2, 2000.
[9] Yanlei Diao, and Michael J. Franklin, “High-
Performance XML Filtering: An Overview of YFilter”,
IEEE Data Engineering Bulletin , March, 2003
[10] J. Fiaidhi, S. Mohammed, M. Garg and A. Arif,
“Developing a SAX Filtering Intermediary Service for
Protecting SVG Multimedia Contents in a Ubiquitous
Publish/Subscribe Environment”, Int.Conference on
Internet Computing (ICOMP05), Las Vegas, USA, June
27-30, 2005.

[11] C. Enrique Ortiz, “An Introduction to Java Card
Technology”, Sun Developer Network White Paper,
September 2003
http://developers.sun.com/techtopics/mobility/javacard/
articles/javacard3/
[12] MIT Press, “JavaTM Cryptography Architecture
API Specification & Reference”, 2 May 1997,
http://cycleserv2.csail.mit.edu/jdk/guide/security/Crypt
oSpec.html
[13] Elliotte Rusty Harold, “An Introduction to StAX”,
O’Reilly XML.com Newsletter, September 17, 2003
http://www.xml.com/pub/a/2003/09/17/stax.html

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp139-144)

