

Responsive Objects, Surfaces and
Spaces (ROSS): Framework for
Simplifying Cross-Device
Communication
Aneesh P. Tarun, Ahmed Sabbir Arif, Andrea Bellucci, Ali Mazalek

Abstract
Responsive Objects, Surfaces, and Spaces (ROSS) is a
framework that enables developers to easily build
applications for heterogeneous network of tangible
devices and platforms. This position paper outlines the
current state of the ROSS framework, lessons we have
learned, challenges ahead, and how the ROSS
framework facilitates the vision of interactive
infrastructures.

Author Keywords
Toolkits; API; Cross-Device Communication; Tangible
User Interfaces.

ACM Classification Keywords
H.4.3. Communications Applications.

Introduction
Tangible User Interfaces [3] have embodied Mark
Weiser's vision of Ubiquitous Computing [6] and
successfully argued that the physical instantiation of
digital media is necessary and advantageous for the
seamless interaction with the digital world. Within the
last decade, interest and research into TUIs has grown

Copyright is held by the author/owner(s).

TEI’15, Jan 15–19, 2015, Stanford University, Stanford, California, USA.

Workshop on Interactive Infrastructures – Towards a Language for

Distributed Interfaces

Aneesh P. Tarun
Synaesthetic Media Lab
Ryerson University
Toronto, Ontario, Canada
aneesh@ryerson.ca

Ahmed Sabbir Arif
Synaesthetic Media Lab
Ryerson University
Toronto, Ontario, Canada
asarif@ryerson.ca

Andrea Bellucci
Department of Computer Science
Universidad Carlos III de Madrid
Leganés (Madrid), Spain
abellucc@inf.uc3m.es

Ali Mazalek
Synaesthetic Media Lab
Ryerson University
Toronto, Ontario, Canada
mazalek@ryerson.ca

exponentially, leading to the development of hundreds
of prototypes exploring interfaces and interactions for
TUIs. TUIs are also gaining mainstream attention with
the availability of commercial systems such as
Reactables [4] and Sifteo Cubes [5].

Developing TUI prototypes involves bringing together
heterogeneous devices and platforms that include both
off-the-shelf as well as custom hardware and software
systems. This requires a concentrated effort in writing
low-level device driver software and communication
protocols for the multitude of devices encountered. The
complexity involved in such an endeavor might deter
researchers and developers from building a compelling
and effective tangible user experience.

As a research group focusing on developing tangible
media applications, we identified the need for a
"tangible toolkit" that would lower the barrier for
setting up ubiquitous environments. Commercial
availability of tangible platforms further increased our
necessity of a unified tangible framework for application
developers. We developed the Responsive Objects,
Surfaces and Spaces Application Programming Interface
(ROSS API) [7][8] for developing applications for
heterogeneous tangible platforms and devices.

ROSS API
ROSS API is designed to utilize combinations of
different interaction platforms in a single unified
application. The simplest way to enable this is by
abstracting low-level connection and communication
commands. However, this approach does not work well
as the number of devices and variations in their
capabilities increases. This approach also stifles
developers from thinking about their complex

application designs involving different platforms and
devices. ROSS API tackles these challenges by
introducing a new way of thinking about the inherent
structures within application spaces.

With ROSS API, all interactive surfaces, spaces, and
objects are organized in a hierarchical nested structure
that parallel the real world structuring of surfaces,
spaces, and tangible artifacts. This nested structure
enables querying and navigating from one entity to
another within an interactive system.

ROSS API's core class structure includes the following
classes: responsive spaces (RSpace) representing
interactive 3D spaces; responsive surfaces (RSurface)
representing interactive 2D surfaces; responsive active
or passive objects (RObject) tracked within an RSpace
or RSurface; nested standard controls (RControl), part
of an RObject. Each instance of these classes has a
unique identifier and tracks unique properties.

This high-level abstraction serves as an interface
between the applications and the device drivers and
communication protocols. This approach enables
developers to think beyond tedious low-level control
and communication programming.

Consider an example tangible application with an
interactive tabletop with a mobile phone and a puck.
Users can interact with the tabletop and the objects on
top of it. Sensors in the room track the location of
tabletop. Figure 1 shows how the ROSS framework can
represent this setup as a nested structure.

An XML file represents the nested structure of an
application developed by ROSS API. Application

developers write XML files by hand. This information
forms the basis for routing and device information. XML
files also provide a quick and easy way to alter the
system architecture and input methods.

The nodes in a ROSS application automatically detect
one another via multicast packets and communicate
their input device configurations. The Open Sound
Control (OSC) protocol forms the basis for reporting
events between different ROSS layers in real-time.

Figure 1. An example representation of ROSS API's nested structure. Left: ROSS components in a tangible tabletop application within
an interactive room. Right: Representation of the room as a nested API structure.

Challenges & Future Directions
Newer technical opportunities have emerged since our
initial ROSS design specifications. We have identified
several areas of improvement based on these
opportunities. We believe that the outlined future
directions will also encourage for pushing the API to be
relevant beyond TUIs.

(1) Inclusivity: The changing landscape of
interconnected devices and protocols includes newer
hardware platforms such as smart watches, low-cost
computers, and microcontrollers having limited
processing power and memory. We identify two
possible ways to support such devices in a rich
interactive environment. Adopting Javascript as the
primary interface may be one possible way to support

myriad of devices and platforms cropping up. In
addition, we consider providing centralized virtual
storage and/or processing power to a distributed set of
low-footprint devices as an exciting and new way to
think about enabling and empowering ubiquitous
devices.

(2) Ease of Design: We identify the need to simplify the
use of ROSS API by developers of different expertise
levels. The current version of the API favors developers
who think in an Object Oriented Programming (OOP)
style. There is definitely scope for supporting different
programming paradigms within the current framework.
Another barrier for entry, for novice developers, is the
tedious and time-consuming process of preparing a
large XML file (for any tangible application). A possible
solution is to provide a graphical interface for rapidly
configuring device ecosystems and automatically
generating ROSS XML files.

(3) Ad-hoc Grouping and Ownership: ROSS API
supports grouping of devices using XML configuration
files. However, this approach does not allow for ad-hoc
grouping of spatially and temporally collocated devices.
We see an opportunity in supporting ad-hoc groupings
in collaborative and unplanned scenarios.

(4) Disjoint Infrastructures: Our discussion of ad-hoc
grouping raises the question of disjoint sets of
interaction ecosystems and how they can communicate
with one another. We believe that there is opportunity
to explore issues of ownership, control, and security
within the larger framework of nested objects, surfaces,
and spaces.

(5) Adaptive User Interfaces: Currently the API focuses
on abstracting the hardware and communications
aspect of heterogeneous devices. However, research
threads in multi-device interfaces [1][2] show
opportunities for contextually adapting UIs for a
network of devices. Current frameworks, including
ROSS API, do not support easy deployment of adaptive
UIs for multiple devices. We think that there is scope
for supporting the deployment and management of UIs
across devices within the ROSS framework.

(6) Larger Scope: ROSS API was motivated by the need
to easily develop applications for various tangible
frameworks. However, there is sufficient overlap
between TUIs, AR interfaces, and Wearables to position
the framework within the larger scope of Ubiquitous
Computing. A conscious effort in this direction will
ensure a more inclusive framework that can evolve with
the changing landscape of devices, platforms, and
interaction paradigms.

Workshop Goals
With ROSS API we have taken a first step towards
enabling application development for heterogeneous
tangible devices. We hope to engage in a discussion of
the relevance of ROSS API in the wider context of
Ubiquitous Computing. We believe that the ROSS
framework can be leveraged to support the evolving
landscape of interactive infrastructures.

Acknowledgements
This work has been supported in part by Qualcomm as
well as the SSHRC CRC Program.

References
[1] Girouard, A., Tarun, A., & Vertegaal, R.
DisplayStacks: interaction techniques for stacks of
flexible thin-film displays. In CHI '12. ACM (2012),
2431-2440.
[2] Hamilton, P., and Wigdor, D., J. Conductor:
enabling and understanding cross-device interaction. In
CHI '14. ACM (2014), 2773-2782.
[3] Ishii, H. and Ullmer, B. Tangible bits: towards
seamless interfaces between people, bits and atoms. In
PCHI '97. ACM (1997), 234-241.

[4] Reactable. http://www.reactable.com
[5] Sifteo. http://www.sifteo.com
[6] Weiser, M. The computer for the 21st century.
Scientific American 265, 3 (1991), 94-104.
[7] Wu, A., Jog, J., Mendenhall, S., and Mazalek, A. A
framework interweaving tangible objects, surfaces and
spaces. In HCII '11. Springer (2011), 148-157.
[8] Wu, A., Mendenhall, S., Jog, J., Hoag, L. S., and
Mazalek, A. A nested API structure to simplify cross-
device communication. In TEI '12. ACM (2012), 225-
232.

