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Figure 1: TeleDriver allows operators to control telepresence robots using a driving simulator, mapping the steering wheel, gear
shifter, gas pedal, and brake pedal to robot actions. The figure shows an operator, the control interface, and the robot in action.

Abstract
We introduce TeleDriver, a system inspired by driving simulators
that maps motor vehicle controls to corresponding telepresence ro-
bot actions. We conducted a study to compare TeleDriver with a tra-
ditional desktop interface among both drivers and non-drivers. The
study revealed that drivers could effectively transfer their driving
skills to TeleDriver, completing tasks 23% faster and with 39% fewer
errors compared to the default method. In contrast, non-drivers
were 26% slower and made 147% more errors using TeleDriver. Per-
formance was comparable between drivers and non-drivers when
using the default method. Notably, both groups demonstrated learn-
ing with TeleDriver. By the final trial, drivers were 17% faster and
58%more accurate, while non-drivers were 13% faster and 63%more
accurate compared to their initial performance.

Keywords
Control Interface, Embodiment, Maneuver, Out-of-sight Robots,
Racing Wheel, Remote, Robotics, Skill Transfer

ACM Reference Format:
Ghazal Zand and Ahmed Sabbir Arif. 2025. TeleDriver: A Driving Simulator-
Inspired Technique for Steering Telepresence Robots. In The PErvasive

This work is licensed under a Creative Commons Attribution International
4.0 License.

PETRA ’25, Corfu Island, Greece
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1402-3/25/06
https://doi.org/10.1145/3733155.3733208

Technologies Related to Assistive Environments (PETRA ’25), June 25–27, 2025,
Corfu Island, Greece. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3733155.3733208

1 Introduction
Telepresence robots equipped with videotelephony allow people
with limited mobility to visit places and participate in events re-
motely using robots as avatars [14]. Although these robots can be
owned personally, they are also envisioned as shared resources [31].
For example, a hospital can maintain a fleet of telepresence robots
for patients to operate remotely to consult physicians. This shared
usage model can improve accessibility for people with limited mo-
bility and those in rural areas with limited transportation options,
while also expanding access to education, healthcare, rehabilita-
tion, and other essential services for economically disadvantaged
communities [14, 45, 51]. However, a significant challenge for the
widespread adoption of telepresence robots is the difficulty in oper-
ating them effectively [50]. Users often find tasks such as adjusting
andmaintaining speed, turning, and reversing the robot tedious and
cognitively demanding, leading to errors such as robots backing
into walls or colliding with obstacles [3, 23, 33, 37].

This work proposes a contemporary approach to operating telep-
resence robots. Instead of relying on conventional desktop and
mobile applications that use keyboards, mice, joysticks, or touch-
screens, it envisions a dedicated control station equipped with a
driving simulator. Such stations could be set up at home or in shared
spaces such as libraries or local community centers for communal
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use. The aim is to exploit the existing driving skills of user by allow-
ing them to control telepresence robots using a driving simulator
equipped with a steering wheel, pedals, and gear shifter.

Although driving cars and operating telepresence robots involve
some similar actions, people are generally more proficient at ma-
neuvering automobiles than at remotely controlling telepresence
robots. This disparity has been linked to the idea that automotive
interfaces become extensions of our embodied cognition, encom-
passing not only the driver’s mind and body, but also the automobile
itself [40, 52]. Automotive interfaces employ different physical con-
trols for specific actions, such as a steering wheel for navigation,
a gear shifter for transmission and reverse motions, and pedals
for speed control, which engage different parts of the body. This
physical interaction fosters a sense of embodiment and supports
intuitive control. In contrast, telepresence robots often depend on
virtual controls, which lack the tactile and distributed engagement
of automotive systems. Therefore, we hypothesize that operating a
telepresence robot through a driving simulator can evoke a sense
of embodiment similar to driving an automobile. This could en-
able faster learning while providing a more effective and enjoyable
interaction experience [21, 34].

The contribution of this work is thus threefold. First, we design
TeleDriver, an interactive system inspired by driving simulators
that maps driving controls to telepresence robot actions. Second,
we examine whether the driving analogy facilitates faster learning
by transferring automotive skills to telepresence robots. Finally, we
explore whether operators without driving experience can learn
the method with some practical practice.

2 Related Work
This section reviews various control systems for telepresence robots
and studies examining skill transfer between different systems.

2.1 Control Interfaces
Most interactive systems for controlling telepresence robots rely
on desktop setups with keyboards and mice [50]. Bazzano et al.
[4] introduced a keyboard-based method in which operators used
arrow keys to manually steer the robot and a point-and-click ap-
proach in which operators selected a destination on the robot’s
camera feed for autonomous navigation. Their study showed that
the keyboard-based method allowed for faster task completion
with fewer interactions compared to the autonomous approach.
Similarly, Mishra et al. [27] developed a keyboard-based method
along with an autonomous approach that first identified the face of
a person and then followed them. However, these methods were
not evaluated in user studies. Mosiello et al. [28] improved the
point-and-click method by projecting the dimensions of the robot
onto the driving surface, enhancing the spatial awareness of the
operators. Macharet and Florencio [23] proposed semi-autonomous
and autonomous control methods to reduce collisions. The semi-
autonomous approach used keyboard arrow keys for steering while
the robot avoided obstacles automatically. The autonomous method
allowed operators to select a direction with a mouse, and the robot
navigated autonomously. In an evaluation, the autonomous method
achieved the fastest task completion time and the fewest collisions.

In a different study, Rae et al. [38] compared Skype videoconfer-
encing on a tablet with telepresence robots controlled through a
desktop application. The results indicated that the telepresence
robots increased trust between the operators and the participants.
Naseer et al. [30] employed deep reinforcement learning and deep
deterministic policy gradient algorithms to address delayed sig-
nal scenarios, with simulation results suggesting reduced control
tracking errors and improved training effectiveness.

Although joysticks and gamepads are widely used to control
surgical, mining, or delivery robots, they are rarely used for telep-
resence robots [50]. However, academic research has investigated
their potential for telepresence and other remotely operated robots.
Zalud [48] developed a two-handed joystick system for robot tele-
operation, while Promsutipong et al. [36] combined a joystick with
a treadmill for directional control. Neither method was compara-
tively evaluated. Zhang and Hansen [51] demonstrated that joystick
control in virtual reality (VR) outperform gaze tracking, resulting
in fewer collisions and reduced workload. Kratz et al. [17] improved
the control of telepresence robots by integrating a joystick with
a VR headset, and immersion by utilizing stereoscopic video and
head tracking. Xu et al. [46] found that a gesture-based motion
glove enabled faster task completion than joystick controls, but
users preferred joysticks for ease of use. In a broader comparison,
Björnfot [5] evaluated input devices such as keyboards, mice, game
controllers, and dance pads, and concluded that keyboards are the
most reliable, but game controllers offer the fastest performance.

Some researchers have used gaming steering wheels and floor
pedals to remotely control out-of-sight robots. Kružić et al. [18]
developed two control systems: one using a gamepad and another
employing a gaming steering wheel with integrated keys. How-
ever, a comparative study found no significant differences in task
completion time or precision between these methods. Similarly,
Megalingam et al. [26] created a steering wheel-based control sys-
tem, though it was tested only in simulations. Halme et al. [12]
explored five configurations of steering wheels and floor pedals,
combined with various sensory setups including stereo and monovi-
sion, with/without display, head tracking, and fixed cameras. Their
findings suggested minimal performance differences between the
systems once the operators mastered the task. Ott et al. [32] ex-
plored two methods for robot operation: one using arm motion
and the other combining a steering wheel and throttle with a hap-
tic device for force feedback. Their findings showed that the arm
motion method led to improved task completion times. Likewise,
Yang et al. [47] used a force feedback steering wheel to navigate
a tank-type rescue robot, although this was not tested in a user
study. These studies used gaming steering wheels as substitutes for
traditional controllers, either relying on built-in keys and triggers
or enhancing them with motion sensors and head trackers. Most
systems omitted the use of a gas pedal. In contrast, our approach
seeks to replicate an authentic automobile-like driving experience
by meticulously mapping automobile controls to robot operations.

Many researchers have developed interfaces for controlling telep-
resence robots using mobile devices. Ainasoja et al. [1] introduced
a tilt-based control method where operators tilted their mobile de-
vice to move the robot and rolled it to turn. Although this method
achieved a faster task completion time, users preferred a touch-
based alternative. Similarly, Zand et al. [50] designed a one-handed
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tilt-based method in which operators simultaneously tap the screen
and perform directional tilts to steer the robot. This method out-
performed a conventional touch-based interface in speed, accuracy,
and user preference. Kashi et al. [15] proposed a voice command
method for smartphone-based telepresence robot control, but it
has not yet been evaluated. Zand and Arif [49] developed a finger-
wearable mouse to map typical mouse actions to robot operations.
This approach required fewer actions to complete tasks, signifi-
cantly reducing task completion times compared to a keyboard-
based method. Most of these studies focused on task completion
times and subjective feedback, with little attention to error rates. In
contrast, our work takes a holistic approach, incorporating quanti-
tative and qualitative analyses while assessing a broader range of
errors, including collisions, wrong turns, and speed maintenance.

2.2 Skill Transfer
Cognitive psychology suggests that humans can transfer skills
learned from one context to new situations [19]. This transfer is
more effective when a task has been practiced extensively, allowing
for the adaptation of learned techniques to different scenarios. In
fact, transferring skills from related tasks can be more effective than
direct training in a new task [22]. Such as Komar et al. [16] showed
that people with prior experience in striking skills perform better in
softball batting than novices without such experience. In computer
systems, metaphors facilitate skill and knowledge transfer, making
complex systems more intuitive [25]. For example, Fels et al. [10]
used musical metaphors in a digital sound tool to clarify device
operation, while Siio and Tsujita [43] implemented a paperweight
metaphor for mode switching in mobile devices, both improving
user understanding. Rakhmetulla and Arif [39] demonstrated that
users can transfer their keyboard layout skills to a new layout when
using the other as a metaphor. Here, we concentrate on metaphor-
driven skill transfer in driving interfaces.

Regan et al. [41] found that the driving skills developed in a
simulator generalize effectively to real-life traffic situations, appli-
cable in both similar and unfamiliar scenarios. Pradhan et al. [35]
also noted that those trained in a simulator exhibit enhanced risk
awareness, even in situations not covered during training. Fisher
et al. [11] compared the skills of novice drivers trained with a
driving simulator to those without such training, observing better
performance, increased hazard awareness, and a reduced likelihood
of crashes among the trained group. Allen et al. [2] reported sig-
nificant improvements in novice driving behavior after PC-based
training. Furthermore, de Winter et al. [9] identified a significant
correlation between novice drivers’ performance in simulators and
their on-road driving test results, suggesting a transfer of skills
and behaviors from the simulator to real-world driving. Beyond
automobiles, Dannenhoffer and Green [8] demonstrated that flight
simulation training leads to a deeper understanding of aspects like
aircraft stability. Large et al. [20] compared the performance of
novice and experienced train drivers in a simulation, discovering
that while the simulated performance of novices was comparable to
that of experienced drivers, their actual train handling skills were
less developed. Another study on simulating the motion and field
of view of real trucks found improvements in drivers’ abilities to
reverse park real trucks [44].

While most of these studies focused on transferring skills from
computer simulations to real-world applications, our research takes
a novel approach, aiming to transfer skills from the physical world
to the digital domain, an idea that has received little attention in
previous research.

3 TeleDriver
TeleDriver enables operators to control telepresence robots using a
driving simulator, like driving an automobile. Its purpose is to ex-
ploit operators’ preexisting driving skills, while providing a usable,
easy-to-learn solution to non-drivers. It uses a “driving” metaphor
by mapping driving interactions to corresponding telepresence
robot actions: steering wheel to steer the robot, gear shifter for for-
ward and reverse motions, gas pedal for increasing the speed, and
brake pedal for decreasing the speed or a full stop. We mapped driv-
ing simulator controls to corresponding robot movements based
on multiple lab trials.

The steering wheel and the pedals generate values in the range
of [−1, 1]. The steering wheel’s initial position is 0, and rotation
in either direction generates a value up to 1 or −1 depending on
the rotation direction. The values 1 and −1 are the results of full
rotations. The pedals, in contrast, produce 1 in the initial position
(not pressed) and −1 when pressed all the way down. The shifter
has seven modes and their activation is identified by 0 (inactive)
and 1 (active). We defined the gas pedal output as acceleration
(acc) values and the brake pedal output as deceleration (dec) val-
ues, then mapped their output range [−1, 1] to the robot’s speed
range [−10, 0] and [0, 10] for deceleration and acceleration values,
respectively. We then determined the robot’s current speed using
the following equation.

𝑉 𝑡
𝑅𝑜𝑏𝑜𝑡

= (𝐴 ∗ 𝑎𝑐𝑐 + 𝐵 ∗ 𝑑𝑒𝑐)𝑑𝑡 +𝑉 𝑡−1
𝑅𝑜𝑏𝑜𝑡

(1)
Where 𝑉 𝑡

𝑅𝑜𝑏𝑜𝑡
is the velocity of the robot at time 𝑡 , 𝑉 0

𝑅𝑜𝑏𝑜𝑡
=

0, 𝑑𝑡 is a very small period of time 𝑑𝑡 = 0.1s, and 𝐴 and 𝐵 are
constants. For safety, we set a bigger weight for the deceleration
than acceleration, 𝐴 = 1 and 𝐵 = 4. Besides, lab trials revealed that
these values better replicate automobile driving experience. Also,
like an automobile, when the operator releases the gas pedal when
the robot is at its maximum speed, it automatically slows down
and makes a full-stop in 3 seconds. This time window was used
for the safety of the robot and the bystanders, as immediate stops
while at full-speed resulted in abrupt jumps forward in lab trials.
The robot’s direction is calculated directly from the steering wheel
output (stw) using the following linear function.

Θ𝑡
𝑅𝑜𝑏𝑜𝑡

= (450 ∗ 𝑠𝑡𝑤) (2)
Where Θ𝑡

𝑅𝑜𝑏𝑜𝑡
is the robot’s orientation at time 𝑡 , and the steer-

ing wheel’s full rotation angle is 450◦ in both directions. Table 1
summarizes the mapping between driving simulator controls and
corresponding robot actions.

4 User Study
We conducted a user study to compare TeleDriver with the default
Ohmni Telepresence Robot web application in terms of speed, ac-
curacy, and perceived performance and workload. We selected the
Ohmni web application as our baseline, reflecting the prevalent
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Table 1: Mapping driving simulator controls to robot actions.

Simulator Output Robot Action Mapping

Gas pedal [−1, 1] Increase speed [0, 2] mph Eq. 1
Brake pedal [−1, 1] Decrease speed or stop Eq. 1

Steering wheel [−1, 1] Orientation [0, 360◦]
Clockwise, counterclockwise Eq. 2

Gear shifter
(7 Modes) 0 or 1 Change direction of motion

Forward, reverse, park −

use of desktop applications operated with a keyboard and mouse
for telepresence robot interaction. Our objective was not only to
compare the performance between our proposed method and the
most dominant approach, but also to explore the potential of drivers
to transfer their driving skills to the system. Given this aim, we did
not include input devices like joysticks or game controllers in the
study as they were not pertinent to our study’s goals.

4.1 Participants
We recruited 24 volunteers for the study. They were pre-screened
for driving experience to form two groups: drivers and non-drivers.
There were 12 participants in the drivers group. Their age ranged
from 19 to 25 years (M = 20.67 years, SD = 2.1). Six of them identified
as women and six as men. They all owned and drove cars for at
least the last two years (M = 4 years of experience, SD = 2.4). The
non-drivers group, too, had 12 participants. Their age ranged from
18 to 38 years (M = 21.58 years, SD = 5.8). Nine of them identified
themselves as women and three as men. None of them had driving
experience or had learned to drive or used a driving simulator prior
to the study. All participants received US $10 for volunteering.

4.2 Equipment
We used an Ohmni Telepresence Robot in the study, consists of a
4K forward-facing camera, a wide angle downward-facing camera,
and a 256.54 mm HD IPS touchscreen (Fig. 2). We developed a
custom web application for controlling the robot’s movements
with TeleDriver. The baseline condition used the default Ohmni
Telepresence Robot web application, described in Zand and Arif
[49]’s work. Both apps were viewed on a Google Chrome browser
on a Viotek 49 inch 32:9 curved monitor at 3840 × 1080 pixels.
Although we could have used the full display to show the camera
feeds in the custom app, we kept its dimension fairly comparable to
the default app to eliminate a potential confound. We could not use
the same interface for both methods because they require different
controls and, consequently, different feedback mechanisms.

A Logitech G923 racing wheel and pedals for PlayStation 4 and
PC (Fig. 2) were used to get control commands from operators
(wheel size: 270 × 260 × 278 mm, pedals size: 167 × 428.5 × 311
mm). The wheel had the capability of a hall-effect steering sensor,
900 degrees rotation lock-to-lock, and an overheat safeguard. The
pedals feature a nonlinear brake pedal, textured heel grip, and self-
calibrating capability. Both systems were launched on a desktop
computer (Intel Core i7, 16GB RAM) running on a Windows 11.

The default app used an HP Pavilion Keyboard and Mouse 200.
The up and down arrow keys were used to move the robot forward

and backward, respectively, and the left and right arrow keys were
used for turning the robot left and right, respectively. The app also
enabled adjusting the robot’s velocity by dragging a horizontal
slider at the left bottom corner of the app.

Figure 2: The robot and the setup used in the study.

4.3 Design
We used a 2 × 2 × 4 mixed-design for the study. There was one
between-subjects variable with two levels (experience: drivers, non-
drivers), and two within-subjects variables with two and four levels:
method (default, TeleDriver) and trial (4 trials). The methods were
counterbalanced to eliminate any potential effects of order. In each
trial, participants navigated the robot through an obstacle path to
the target, then brought it back to them (Fig. 3). This path was
proposed in a previous work [50] to assure that participants are
forced to use all robot control operations. The dependent variables
were: task completion time (minutes), which signifies the average
time operators took to navigate the robot to the target then bring it
back to the initial position, and error rate (%), which signifies the
average errors committed per task. An error was recorded when
the robot collided with an obstacle, bumped into the corridor wall,
took a wrong turn, or deviated one foot (∼0.3 m) from the path.

4.4 Procedure
The study was carried out in a laboratory. The telepresence robot
was out-of-sight in a nearby empty corridor. On arrival, we de-
scribed the study procedure to the participants and collected their
informed consent forms. Then, they completed a short demographic
questionnaire and a questionnaire on technology usage.

In the study, participants operated a telepresence robot using
the default method and TeleDriver in counterbalanced order. We
demonstrated the methods ahead of use, and enabled participants
to practice with each for 2–3 minutes. In each of the four trials,
participants guided the robot through an obstacle path to the tar-
get, then brought it back to the initial position (Fig. 3) relying on
the video feeds from the robot’s forward and downward facing
cameras. The ideal path was clearly marked with blue tape (Fig. 1).
Participants were asked to complete the trials as fast and accurately
as possible. Specifically, they were instructed to avoid collisions
with obstacles and not to deviate beyond one foot from the path.

Upon completion of the study, participants were asked to com-
plete two post-study questionnaires. One System Usability Scale
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(SUS) [6] inspired custom questionnaire that asked participants to
rate statements on the examined methods’ speed, accuracy, learn-
ability, ease-of-use, confidence, and enjoyment on a 5-point Likert
scale. And the NASA-TLX questionnaire [29], where participants
rated the examined methods’ perceived workload in terms of men-
tal, physical, and temporal demands, effort, and frustration on a
20-point scale. Both questionnaires included an open-ended section
allowing participants to expand on their responses, offer comments
on the methods evaluated, or give feedback.

Figure 3: The obstacle path used in the user study. The blue
line represents the path the robot followed, the red rectangles
are obstacles placed on the floor, and the green dots represent
the start point (right) and the target (left).

5 Results
A full study session, which included introduction, demonstration,
breaks and questionnaire, lasted 45–60 minutes. Specifically for
the experimental tasks, drivers averaged 29.4 minutes, while non-
drivers took an average of 36.2 minutes.

A Martinez-Iglewicz test revealed that the response variable
residuals were normally distributed. A Mauchly’s test indicated
that the variances of populations were equal. Therefore, we used a
mixed-design ANOVA for all analyses. We used a Wilcoxon Signed-
Rank test for the subjective data. We also report effect sizes for the
statistically significant results, namely eta-squared (𝜂2) for ANOVA
and Pearson’s 𝑟 for Wilcoxon Signed-Rank test.

(a) Overall (b) By user group

Figure 4: Average task completion times (minutes) with the
two methods. The red asterisk indicates statistically signifi-
cant difference. Error bars represent ±1 standard deviation.

5.1 Task Completion Time
An ANOVA failed to identify a significant main effect of method
on task completion time (𝐹1,22 = 0.05, 𝑝 = .82). The average task
completion times with the default method and TeleDriver were
4.08 minutes (SD = 0.65) and 4.12 minutes (SD = 1.23), respectively
(Fig. 4a). However, the main effect of experience (𝐹1,22 = 14.74, 𝑝 <

.001, 𝜂2 = 0.19) and the interaction effect of experience × method
(𝐹1,22 = 40.02, 𝑝 < .00001, 𝜂2 = 0.26) were statistically significant.
Drivers required on average 4.16 minutes (SD = 0.76) and 3.2 min-
utes (SD = 0.52) to complete a task with the default method and
TeleDriver, respectively. While, non-drivers took on average 4.01
minutes (SD = 0.51) with the default and 5.05 minutes (SD = 1.02)
with TeleDriver to complete a task. Fig. 4b illustrates this. A Tukey-
Kramer multiple-comparison test revealed that drivers were signifi-
cantly faster with TeleDriver, while non-drivers were significantly
faster with the default method. Relevantly, the test identified three
distinct groups: {Drivers × TeleDriver}, {Non-drivers × TeleDriver},
and {Non-drivers × Default, Drivers × Default}, where {Drivers ×
TeleDriver} was significantly faster.

An ANOVA identified a significant effect of trial on task com-
pletion time (𝐹3,66 = 31.48, 𝑝 < .00001, 𝜂2 = 0.05). A Tukey-Kramer
multiple-comparison test revealed that both drivers and non-drivers
were significantly faster in the last trial with both the default
method and TeleDriver compared to the first trial. Fig. 5 illustrates
average task completion times by trial for both drivers and non-
drivers, fitted to power trendlines.

5.2 Error Rate
An ANOVA identified a significant main effect of method on error
rate (𝐹1,22 = 8.22, 𝑝 < .01, 𝜂2 = 0.03). The average error rates with
the default method and TeleDriver were 1.47% (SD = 1.51) and 2.14%
(SD = 2.02), respectively (Fig. 6a). The main effect of experience
(𝐹1,22 = 9.96, 𝑝 < .005, 𝜂2 = 0.08) and the interaction effect of
experience×method (𝐹1,22 = 30.86, 𝑝 < .00001, 𝜂2 = 0.13) were also
statistically significant. Drivers committed on average 1.60% errors
(SD = 1.54) with the default method and 0.98% errors (SD = 1.0) with
TeleDriver. While, non-drivers committed on average 1.33% errors
(SD = 1.48) with the default method and 3.29% errors (SD = 2.13)
with TeleDriver (Fig. 6b). A Tukey-Kramermultiple-comparison test
revealed that non-drivers committed significantly more errors with
TeleDriver than the default method. However, no such effect was
identified for drivers. The test identified two distinct groups: {Non-
drivers × TeleDriver} and {Non-drivers ×Default, Drivers ×Default,
Drivers × TeleDriver}, where the former committed significantly
more errors than the latter. A deeper analysis of the data did not
identify any significant difference in error distribution between the
two user groups and the two methods (Fig. 7).

An ANOVA identified a significant effect of trial on error rate
(𝐹3,66 = 24.41, 𝑝 < .00001, 𝜂2 = 0.15). A Tukey-Kramer multiple-
comparison test revealed that non-drivers were significantly more
accurate in the last trial with both the default method and TeleDriver
compared to the first trial. While, no such effect was identified with
drivers. Fig. 8 illustrates average error rates by trial for both drivers
and non-drivers, fitted to power trendlines.
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(a) Drivers (b) Non-drivers

Figure 5: Average task completion times (minutes) by trial for the two methods fitted to power trendlines. Error bars represent
±1 standard deviation.

(a) Overall (b) By user group

Figure 6: Average error rates (%) for the two methods. Red
asterisks indicate statistically significant differences. Error
bars represent ±1 standard deviation.

Figure 7: Average percentage of the types of errors committed
by the two user groups with the two examined methods.

5.3 Perceived Performance
In regard to drivers, a Wilcoxon Signed-Rank test identified a signif-
icant effect of method on perceived speed (𝑧 = −2.69, 𝑝 < .01, 𝑟 =
0.78) and enjoyment (𝑧 = −2.06, 𝑝 < .05, 𝑟 = 0.59). However, there
was no significant effect on accuracy (𝑧 = −1.01, 𝑝 = .31), learn-
ability (𝑧 = −0.37, 𝑝 = .71), ease-of-use (𝑧 = −0.37, 𝑝 = .71), or
confidence (𝑧 = −1.41, 𝑝 = .16). Fig. 9a shows the median perceived

performance ratings of the methods by drivers. In regard to non-
drivers, a Wilcoxon Signed-Rank test identified a significant effect
of method on learnability (𝑧 = −2.83, 𝑝 < .005, 𝑟 = 0.82), ease-of-
use (𝑧 = −2.83, 𝑝 < .005, 𝑟 = 0.82), and confidence (𝑧 = −1.98, 𝑝 <

.05, 𝑟 = 0.57). However, there was no significant effect on perceived
speed (𝑧 = −1.75, 𝑝 = .08), accuracy (𝑧 = −1.73, 𝑝 = .08), or en-
joyment (𝑧 = −1.13, 𝑝 = .26). Fig. 9b shows the median perceived
performance ratings of the methods by non-drivers.

5.4 Perceived Workload
This section presents raw NASA-TLX scores by analyzing the sub-
scales individually, which is a common practice in the literature
[13]. In regard to drivers, a Wilcoxon Signed-Rank test identified a
significant effect of method on performance (𝑧 = −2.32, 𝑝 < .05, 𝑟 =
0.67) and frustration (𝑧 = −2.53, 𝑝 < .05, 𝑟 = 0.73). But there was no
significant effect on mental demand (𝑧 = −1.08, 𝑝 = .28), physical
demand (𝑧 = −1.18, 𝑝 = .24), temporal demand (𝑧 = −1.47, 𝑝 =

.14), or effort (𝑧 = −0.85, 𝑝 = .39). Fig. 10a shows the median
perceived workload ratings of the methods by drivers. In regard to
non-drivers, a Wilcoxon Signed-Rank test identified a significant
effect of method on all sub-scales: mental demand (𝑧 = −2.90, 𝑝 <

.005, 𝑟 = 0.84), physical demand (𝑧 = −3.06, 𝑝 < .005, 𝑟 = 0.88),
temporal demand (𝑧 = −2.95, 𝑝 < .005, 𝑟 = 0.85), performance
(𝑧 = −2.44, 𝑝 < .05, 𝑟 = 0.70), effort (𝑧 = −2.80, 𝑝 < .005, 𝑟 = 0.81),
and frustration (𝑧 = −2.04, 𝑝 < .05, 𝑟 = 0.59). Fig. 10b shows the
median perceived workload ratings of the methods by non-drivers.

6 Discussion
Results revealed that drivers were significantly faster in performing
the tasks with TeleDriver than with the default method (23% faster).
In contrast, non-drivers were significantly slower with TeleDriver
(26% slower). Consequently, drivers were significantly faster than
non-drivers (37% faster) in performing the tasks with TeleDriver,
while their performances with the default method were somewhat
comparable (∼4 minutes, Fig. 4b). This was further substantiated
by the rejection of both null hypotheses in an equivalence test
(𝑝 < .05). Similar trends are also evident in error rates. Drivers com-
mitted significantly fewer errors with TeleDriver than the default
method (39% fewer), while non-drivers were significantly more
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(a) Drivers (b) Non-drivers

Figure 8: Average error rates (%) by trial for the two methods fitted to power trendlines. Error bars represent ±1 standard
deviation.

(a) Drivers (b) Non-drivers

Figure 9: Median perceived performance of the default method and TeleDriver by (a) drivers and (b) non-drivers on a 5-point
Likert scale, where “1” to “5” signified “strongly disagree” to “strongly agree”. Error bars represent ±1 standard deviation.

(a) Drivers (b) Non-drivers

Figure 10: Median perceived workload of the default method and TeleDriver by (a) drivers and (b) non-drivers on a raw
NASA-TLX 20-point scale, where “1” to “20” signified “very low” to “very high”, except for the Performance sub-scale, where “1”
to “20” signified “perfect” to “failure”. Error bars represent ±1 standard deviation.

erroneous with it (147% more). Likewise, drivers were significantly
more accurate with TeleDriver than non-drivers (70% fewer errors),
while their error rates with the default method were not statistically
different (1.6% vs 1.3%, Fig. 6b). These results indicate towards the

possibility that drivers can transfer their driving skills to TeleDriver,
facilitating a faster transition from novice to expert. In the post-
study questionnaire, we included an extra question for those with
driving experience, asking whether the “driving” metaphor helped



PETRA ’25, June 25–27, 2025, Corfu Island, Greece Ghazal Zand and Ahmed Sabbir Arif

them master the new method. All participants (N = 12, M = 4.8, SD
= 0.4) responded that it was really helpful. One participant (P07,
male, 19 years) commented, “As Someone who drives a lot and plays
a bunch of racing games the indications on the driving simulator
helped guiding me through the track.”

Both user groups’ task completion times over trial with the two
methods conform to the power law of practice [42] (R2 > 0.95).
Drivers were faster with TeleDriver from the very start, yielding
a 21% lower task completion time than the default method in the
first trial. Yet, they demonstrated learning with TeleDriver. Their
task completion time with the method was 17% faster in the last
trial compared to the first. However, not much learning was ob-
served in the last two trials. Drivers’ task completion time with
TeleDriver was only about 1% faster in the last trial compared to the
third, which suggests that they most probably came closer to the
method’s theoretical lower bound on task completion time. Task
completion time with the default method demonstrated similar
trends. Driver were consistently slower with it, but yielded a 13%
faster task completion time in the last trial compared to the first.
But the difference between the last two trials was merely 0.5%, sug-
gesting that with the default method, too, drivers’ reached closer to
its lower bound on task completion time. For context, drivers were
25% faster with TeleDriver than the default method in the last trial.
The trends observed with non-drivers are different. Initially, they
were 30% slower with TeleDriver compared to the default method,
but made significant improvements across the trials. Their task
completion time with TeleDriver improved by 13% in the last trial
compared to the first. Most importantly, they yielded a 4% faster
task completion time with TeleDriver in the last trial compared to
the third, which suggests that it is likely to improve further with
practice. Learning was also observed with the default method, but
the improvement in the last trial compared to the third was not as
compelling (1.5%). This suggests that non-driver’s task completion
time with the default method is unlikely to get much faster with
practice. In fact, driver and non-drives yielded comparable task com-
pletion times with the default method in the last trial (3.96 minutes
vs. 3.88 minutes). This was also substantiated by an equivalence
test (𝑝 < .05). Relevantly, an exponential smoothing (ETS) model
forecasted that non-drivers’ task completion time with TeleDriver
to cross the same with the default method by the 10th trial, yielding
a 3.3 minutes task completion time.

Drivers were consistently more accurate with TeleDriver than
the default method (31% fewer errors overall and 27% fewer errors
in the last trial). Yet, their error rates with TeleDriver dropped by
58% in the last two trials from the first two trials. In the last two
trials, they yielded only 0.5% and 0.7% error rates with TeleDriver
(Fig. 8a). Accordingly, error rates over trial with TeleDriver did not
fit well to a power trendline (R2 = 0.52). This further supports the
claim that drivers transferred their driving skills to the method,
which enabled them to maintain modest error rates throughout
the study. Non-drivers, in contrast, demonstrated learning with
TeleDriver (R2 = 0.87). Their error rate with the method dropped
by 63% in the last trial compared to the first (Fig. 8b). Not only that,
they yielded a 19% reduction in error rate in the last trial compared
to the third, indicating to the possibility that it is likely to get much
lower with practice. Both drivers and non-drivers demonstrated
some learning with the default method (R2 = 0.79 and 0.84). Drivers’

error rates with the default method dropped by 39% in the last trial
compared to the third. Non-drivers, in contrast, yielded the lowest
error rate with the method in the third trial (0.42% error rate). After
studying the data carefully, we believe this to be purely by chance.
Interestingly, both drivers and non-drivers yielded the same 0.92%
error rates with the default method in the last trial.

These results promote TeleDriver to be an effective method for
steering telepresence robots for both operators with and without
driving experience, as non-drivers are quick to adapt to the system.

6.1 Subjective Feedback
Drivers perceived TeleDriver to be significantly faster than the de-
fault method (which matches the actual results). They also enjoyed
using TeleDriver significantly more than the default method. One
participant (P05, female, 19 years) commented, “I prefer the driving
sim method because it gave a more natural feel to it, as if I am really
moving something.” They felt that both methods were comparable
in terms of learnability and ease-of-use, thus were confident in
using both (Fig. 9a). Non-drivers, in contrast, found TeleDriver to
be significantly more difficult to learn and use, thus were not as
confident in using it as the default method (Fig. 9b). This is not
surprising as they were more familiar with the keyboard/mouse
controls than the driving simulator, and users tend to face similar
challenges when adapting to new technologies [24, pp. 184–187].
Yet, encouragingly, non-drivers did not perceived the methods to be
significantly different in terms of speed and accuracy, and enjoyed
using both methods, which suggest that they are open to adapting
it. One participant (P17, male, 27 years) commented, “The driving
sim method made a bigger impression that gave me a sense of the
space of the robot, it felt like I was driving the robot, instead of a
floating camera.” Non-drivers also acknowledged that they were
getting better at using TeleDriver with practice. One participant
(P19, female, 20 years) commented, “The driving sim method was
challenging at first, but it got easier to use.” Interestingly, almost all
non-drivers commented on how TeleDriver inspired them to learn
how to drive (P15, female, 18 years: “This experience encouraged me
to get my permit soon” ), reduced anxiety of driving (P23, female, 23
years: “The driving sim [... reduced my] anxiety of crashing” ), and
even recommended using it as a gateway to driving (P24, female,
19 years: “It would be useful to put in the DMV [department of motor
vehicles] and help beginner drivers get the feel of how to drive.” ).

6.2 Perceived Workload
Drivers perceived TeleDriver to be significantly better performed
and less frustrating than the default method (Fig. 10a). They found
bothmethods to be not as demanding (≤ 10 out of 20) and somewhat
comparable in terms of mental, physical, and temporal demands
and effort. Non-drivers, on the other hand, found TeleDriver to be
significantly more demanding in terms of mental, physical, and
temporal demands. They felt that it required significantly more
effort to use, not as well-performed as the default method, thus
caused significantly more frustration during the study. One non-
driver (P15, female, 18 years) commented, “I was scared [when using
TeleDriver] to crash into something and damaging the robot.” Another
participant (P16, female, 18 years) commented, “For me, it was a
little harder using the driving simulator. I felt like I had to be more
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alert.” Again, this is not surprising considering that they all were
new users of the method, without any prior experience in driving
or driving simulators or games.

6.3 Understanding & Presence
All respondents, both drivers and non-drivers, agreed that the driv-
ing metaphor enhanced their understanding and sense of presence
in the system. One driver (P07, male, 19 years) noted that TeleDriver
felt more “realistic” and enhanced his sense of actually being there.
A non-driver (P17, male, 27 years) observed that TeleDriver pro-
vided “a sense of the space”, increasing awareness of the robot’s en-
vironment. In addition, some mentioned how this increased sense
of presence contributed to more effective operation. For example, a
non-driver (P24, female, 19 years) mentioned that enhanced pres-
ence reduced her “anxiety” while operating the robot, as she felt
more informed about the surrounding environment.

7 Limitations
A limitation of this study is the small and relatively young sample
size, primarily due to challenges in recruiting adults (18 years or
older) with no driving experience. Most older volunteers had some
driving experience, so to maintain balanced age and gender ratios,
we primarily included young adults in both groups. Therefore,
the results may not be fully generalizable to an older population.
However, the statistically significant results reported in this study
yielded medium to large effect sizes (𝜂2 ≥ 0.05 for a medium effect
size and 𝑟 ≥ 0.5 for a large effect size [7]), suggesting that these
findings could potentially persist in a more age-diverse sample.

8 Conclusion
We presented TeleDriver, a driving simulator inspired interactive
system for controlling telepresence robot that maps driving interac-
tions to corresponding telepresence robot actions. It uses a “driving”
metaphor, with which operators use the steering wheel to steer the
robot, gear shifter for forward and reverse motions, gas pedal for
increasing the speed, and brake pedal for decreasing the speed or a
full-stop. We conducted a user study to compare the method with a
conventional desktop interface with both drivers and non-drivers.
Results provided strong evidence in support of the hypothesis that
drivers can transfer driving skills to TeleDriver, facilitating a faster
transition from novice to expert. Drivers were consistently faster
and more accurate with TeleDriver compared to the conventional
method. They completed the tasks 23% faster and with 39% fewer
errors with TeleDriver. Non-drivers, in contrast, were 26% slower
and committed 147% more errors with TeleDriver compared to
the conventional method. Both drivers and non-drivers yielded
comparable performances with the conventional method. Most in-
terestingly, both drivers and non-drivers demonstrated learning
with TeleDriver. Drivers were 17% faster and 58% more accurate
in the last trial compared to the first, while non-drivers were 13%
faster and 63% more accurate in the last trial compared to the first.

9 Future Work
In the future, we will extend the work for a better, enhanced sense
of embodiment by providing information on the robot’s ambient en-
vironment using haptic feedback. For example, the steering wheel

or the seat can vibrate slightly when the robot is going over rough
terrain, just as it would when driving a vehicle. Likewise, a thermal
diode could be added to the system to provide a sense of heat and
wetness of the path by variating the temperature of the pedals. We
will also optimize the video feeds for a widescreen monitor that
resembles the windshield of an automobile to investigate whether
it improves embodiment, learning, or performance. We will then
investigate the effects of these systems on collaboration and pro-
ductivity. We will also compare the proposed approach with alter-
native control interfaces that integrate joysticks, knobs, buttons,
and gamepads to operate out-of-sight robots.
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